Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.196
Filtrar
1.
J Orthop Surg Res ; 19(1): 212, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561786

RESUMO

BACKGROUND: Osteoporosis (OP) is the result of bone mass reduction and bone structure disorder. Bone marrow mesenchymal stem cells (BMSCs) are the main source of osteogenic precursor cells involved in adult bone remodeling. The involvement of the deubiquitinating enzyme CYLD in OP has recently been discovered. However, the detailed role and mechanism of CYLD remain unknown. METHODS: The OP mouse model was established by performing ovariectomy (OVX) on mice. Hematoxylin and eosin staining, Masson and Immunohistochemical staining were used to assess pathologic changes. Real-time quantitative PCR, Western blot, and immunofluorescence were employed to assess the expression levels of CYLD, WNK1, NLRP3 and osteogenesis-related molecules. The binding relationship between CYLD and WNK1 was validated through a co-immunoprecipitation assay. The osteogenic capacity of BMSCs was determined using Alkaline phosphatase (ALP) and alizarin red staining (ARS). Protein ubiquitination was evaluated by a ubiquitination assay. RESULTS: The levels of both CYLD and WNK1 were decreased in bone tissues and BMSCs of OVX mice. Overexpression of CYLD or WNK1 induced osteogenic differentiation in BMSCs. Additionally, NLRP3 inflammation was activated in OVX mice, but its activation was attenuated upon overexpression of CYLD or WNK1. CYLD was observed to reduce the ubiquitination of WNK1, thereby enhancing its protein stability and leading to the inactivation of NLRP3 inflammation. However, the protective effects of CYLD on osteogenic differentiation and NLRP3 inflammation inactivation were diminished upon silencing of WNK1. CONCLUSION: CYLD mitigates NLRP3 inflammasome-triggered pyroptosis in osteoporosis through its deubiquitination of WNK1.


Assuntos
Doenças Ósseas , Osteoporose , Animais , Feminino , Camundongos , Diferenciação Celular , Células Cultivadas , Enzima Desubiquitinante CYLD , Inflamassomos , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Osteogênese , Osteoporose/metabolismo , Piroptose
2.
Nat Commun ; 15(1): 2856, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565851

RESUMO

Aging, chronic high-fat diet feeding, or housing at thermoneutrality induces brown adipose tissue (BAT) involution, a process characterized by reduction of BAT mass and function with increased lipid droplet size. Single nuclei RNA sequencing of aged mice identifies a specific brown adipocyte population of Ucp1-low cells that are pyroptotic and display a reduction in the longevity gene syntaxin 4 (Stx4a). Similar to aged brown adipocytes, Ucp1-STX4KO mice display loss of brown adipose tissue mass and thermogenic dysfunction concomitant with increased pyroptosis. Restoration of STX4 expression or suppression of pyroptosis activation protects against the decline in both mass and thermogenic activity in the aged and Ucp1-STX4KO mice. Mechanistically, STX4 deficiency reduces oxidative phosphorylation, glucose uptake, and glycolysis leading to reduced ATP levels, a known triggering signal for pyroptosis. Together, these data demonstrate an understanding of rapid brown adipocyte involution and that physiologic aging and thermogenic dysfunction result from pyroptotic signaling activation.


Assuntos
Tecido Adiposo Marrom , Piroptose , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Transdução de Sinais , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
3.
Int J Mol Med ; 53(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577932

RESUMO

Pyroptosis, a programmed cell death marked by lytic and inflammatory characteristics, plays a crucial role in non­infectious inflammation­related diseases but can lead to detrimental outcomes when dysregulated. Stem cells have emerged as key players in modulating pyroptosis through paracrine signaling, offering a novel avenue for tissue repair and regeneration. The present review delved into previous studies elucidating the intricate interplay between stem cells and pyroptosis, emphasizing the potential of stem cell­based therapies in regulating pyroptotic pathways. The exploration of this dynamic interaction holds promise for developing strategies to harness stem cells for effective tissue repair and regeneration in the context of inflammation­related diseases.


Assuntos
Apoptose , Piroptose , Humanos , Células-Tronco , Inflamação
4.
Zhonghua Gan Zang Bing Za Zhi ; 32(3): 284-288, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38584116

RESUMO

Pyroptosis is a newly discovered kind of cell death modality that, due to its association with innate immunity, plays a crucial role in cytolysis and inflammatory cytokine release during host defense against infection. In recent years, studies have shown that pyroptosis plays an important role in the occurrence and development of liver diseases. This article introduces and elaborates on the most recent research progress on pyroptosis in liver diseases based on the morphological features, molecular and pathophysiological mechanisms.


Assuntos
Hepatopatias , Piroptose , Humanos , Citocinas , Inflamassomos/metabolismo
5.
J Immunother Cancer ; 12(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580330

RESUMO

BACKGROUND: Initiation of antitumor immunity is reliant on the stimulation of dendritic cells (DCs) to present tumor antigens to naïve T cells and generate effector T cells that can kill cancer cells. Induction of immunogenic cell death after certain types of cytotoxic anticancer therapies can stimulate T cell-mediated immunity. However, cytotoxic therapies simultaneously activate multiple types of cellular stress and programmed cell death; hence, it remains unknown what types of cancer cell death confer superior antitumor immunity. METHODS: Murine cancer cells were engineered to activate apoptotic or pyroptotic cell death after Dox-induced expression of procell death proteins. Cell-free supernatants were collected to measure secreted danger signals, cytokines, and chemokines. Tumors were formed by transplanting engineered tumor cells to specifically activate apoptosis or pyroptosis in established tumors and the magnitude of immune response measured by flow cytometry. Tumor growth was measured using calipers to estimate end point tumor volumes for Kaplan-Meier survival analysis. RESULTS: We demonstrated that, unlike apoptosis, pyroptosis induces an immunostimulatory secretome signature. In established tumors pyroptosis preferentially activated CD103+ and XCR1+ type I conventional DCs (cDC1) along with a higher magnitude and functionality of tumor-specific CD8+ T cells and reduced number of regulatory T cells within the tumor. Depletion of cDC1 or CD4+ and CD8+ T cells ablated the antitumor response leaving mice susceptible to a tumor rechallenge. CONCLUSION: Our study highlights that distinct types of cell death yield varying immunotherapeutic effect and selective activation of pyroptosis can be used to potentiate multiple aspects of the anticancer immunity cycle.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Piroptose , Células Dendríticas , Citocinas/metabolismo
6.
Signal Transduct Target Ther ; 9(1): 87, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584157

RESUMO

The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Sepse , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Gasderminas , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Piroptose
7.
Ecotoxicol Environ Saf ; 275: 116282, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564859

RESUMO

The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.


Assuntos
Arsênio , Hepatopatias , Ratos , Animais , Inflamassomos/metabolismo , Ratos Sprague-Dawley , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Piroptose , Modelos Animais de Doenças , Fibrose , Cirrose Hepática/induzido quimicamente , Sulfonamidas/farmacologia , Citocinas/metabolismo
8.
Immunity ; 57(4): 674-699, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599165

RESUMO

Nucleotide-binding oligomerization domain (NOD)-like receptors, also known as nucleotide-binding leucine-rich repeat receptors (NLRs), are a family of cytosolic pattern recognition receptors that detect a wide variety of pathogenic and sterile triggers. Activation of specific NLRs initiates pro- or anti-inflammatory signaling cascades and the formation of inflammasomes-multi-protein complexes that induce caspase-1 activation to drive inflammatory cytokine maturation and lytic cell death, pyroptosis. Certain NLRs and inflammasomes act as integral components of larger cell death complexes-PANoptosomes-driving another form of lytic cell death, PANoptosis. Here, we review the current understanding of the evolution, structure, and function of NLRs in health and disease. We discuss the concept of NLR networks and their roles in driving cell death and immunity. An improved mechanistic understanding of NLRs may provide therapeutic strategies applicable across infectious and inflammatory diseases and in cancer.


Assuntos
Inflamassomos , Receptores de Reconhecimento de Padrão , Inflamassomos/metabolismo , Piroptose , Imunidade Inata , Nucleotídeos
9.
Cell Mol Biol Lett ; 29(1): 55, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643118

RESUMO

BACKGROUND: Viral myocarditis (VMC) is a disease resulting from viral infection, which manifests as inflammation of myocardial cells. Until now, the treatment of VMC is still a great challenge for clinicians. Increasing studies indicate the participation of miR-29b-3p in various diseases. According to the transcriptome sequencing analysis, miR-29b-3p was markedly upregulated in the viral myocarditis model. The purpose of this study was to investigate the role of miR-29b-3p in the progression of VMC. METHODS: We used CVB3 to induce primary cardiomyocytes and mice to establish a model of viral myocarditis. The purity of primary cardiomyocytes was identified by immunofluorescence. The cardiac function of mice was detected by Vevo770 imaging system. The area of inflammatory infiltration in heart tissue was shown by hematoxylin and eosin (H&E) staining. The expression of miR-29b-3p and DNMT3A was detected by quantitative real time polymerase chain reaction (qRT-PCR). The expression of a series of pyroptosis-related proteins was detected by western blot. The role of miR-29b-3p/DNMT3A in CVB3-induced pyroptosis of cardiomyocytes was studied in this research. RESULTS: Our data showed that the expression of miR-29b-3p was upregulated in CVB3-induced cardiomyocytes and heart tissues in mice. To explore the function of miR-29b-3p in CVB3-induced VMC, we conducted in vivo experiments by knocking down the expression of miR-29b-3p using antagomir. We then assessed the effects on mice body weight, histopathology changes, myocardial function, and cell pyroptosis in heart tissues. Additionally, we performed gain/loss-of-function experiments in vitro to measure the levels of pyroptosis in primary cardiomyocytes. Through bioinformatic analysis, we identified DNA methyltransferases 3A (DNMT3A) as a potential target gene of miR-29b-3p. Furthermore, we found that the expression of DNMT3A can be modulated by miR-29b-3p during CVB3 infection. CONCLUSIONS: Our results demonstrate a correlation between the expression of DNMT3A and CVB3-induced pyroptosis in cardiomyocytes. These findings unveil a previously unidentified mechanism by which CVB3 induces cardiac injury through the regulation of miR-29b-3p/DNMT3A-mediated pyroptosis.


Assuntos
MicroRNAs , Miocardite , Camundongos , Animais , Miocardite/genética , Miocardite/metabolismo , Miócitos Cardíacos/metabolismo , Piroptose , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/metabolismo , Antagomirs/metabolismo
10.
Viral Immunol ; 37(3): 126-138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593460

RESUMO

Hepatitis C virus (HCV), despite the availability of effective direct-acting antivirals (DAAs) that clear the virus from >95% of individuals treated, continues to cause significant health care burden due to disease progression that can lead to fibrosis, cirrhosis, and/or hepatocellular carcinoma. The fact that some people who are treated with DAAs still go on to develop worsening liver disease warrants further study into the immunopathogenesis of HCV. Many viral infections, including HCV, have been associated with activation of the inflammasome/pyroptosis pathway. This inflammatory cell death pathway ultimately results in cell lysis and release of inflammatory cytokines, IL-18 and IL-1ß. This review will report on studies that investigated HCV and inflammasome activation/pyroptosis. This includes clinical in vivo data showing elevated pyroptosis-associated cytokines in the blood of individuals living with HCV, studies of genetic associations of pyroptosis-related genes and development of liver disease, and in vitro studies aimed at understanding the mechanism of pyroptosis induced by HCV. Finally, we discuss major gaps in understanding and outstanding questions that remain in the field of HCV-induced pyroptosis.


Assuntos
Hepatite C Crônica , Hepatite C , Neoplasias Hepáticas , Humanos , Hepacivirus , Inflamassomos/metabolismo , Piroptose , Antivirais/uso terapêutico , Antivirais/farmacologia , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Hepatite C/tratamento farmacológico , Citocinas
11.
J Biochem Mol Toxicol ; 38(4): e23710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605440

RESUMO

Myocardial ischemia‒reperfusion injury (MI/RI) is closely related to pyroptosis. alkB homolog 5 (ALKBH5) is abnormally expressed in the MI/RI models. However, the detailed molecular mechanism of ALKBH5 in MI/RI has not been elucidated. In this study, rats and H9C2 cells served as experimental subjects and received MI/R induction and H/R induction, respectively. The abundance of the targeted molecules was evaluated using RT-qPCR, Western blotting, immunohistochemistry, immunofluorescence, and enzyme-linked immunosorbent assay. The heart functions of the rats were evaluated using echocardiography, and heart injury was evaluated. Cell viability and pyroptosis were determined using cell counting Kit-8 and flow cytometry, respectively. Total m6A modification was measured using a commercial kit, and pri-miR-199a-5p m6A modification was detected by Me-RNA immunoprecipitation (RIP) assay. The interactions among the molecules were validated using RIP and luciferase experiments. ALKBH5 was abnormally highly expressed in H/R-induced H9C2 cells and MI/RI rats. ALKBH5 silencing improved injury and inhibited pyroptosis. ALKBH5 reduced pri-miR-199a-5p m6A methylation to block miR-199a-5p maturation and inhibit its expression. TNF receptor-associated Factor 3 (TRAF3) is a downstream gene of miR-199a-5p. Furthermore, in H/R-induced H9C2 cells, the miR-199a-5p inhibitor-mediated promotion of pyroptosis was reversed by ALKBH5 silencing, and the TRAF3 overexpression-mediated promotion of pyroptosis was offset by miR-199a-5p upregulation. ALKBH5 silencing inhibited pri-miR-199a-5p expression and enhanced pri-miR-199a-5p m6A modification to promote miR-199a-5p maturation and enhance its expression, thereby suppressing pyroptosis to alleviate MI/RI through decreasing TRAF3 expression.


Assuntos
Adenina , MicroRNAs , Traumatismo por Reperfusão Miocárdica , Humanos , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Piroptose , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , MicroRNAs/metabolismo , Desmetilação , Apoptose , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo
12.
Clin Exp Pharmacol Physiol ; 51(6): e13858, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636940

RESUMO

Intracerebral haemorrhage (ICH) presents significant challenges in clinical management because of the high morbidity and mortality, necessitating novel therapeutic approaches. This study aimed to assess the neuroprotective effects of loganin in a rat ICH model. Sprague-Dawley rats were used, subjected to a collagenase-induced ICH model, followed by loganin treatment at doses of 2.5, 5 and 10 mg/kg. Neurological functions were evaluated using the modified neurological severity score (mNSS) and a rotarod test. Results indicated a significant improvement in neurological functions in loganin-treated groups, evident from the mNSS and rotarod tests, suggesting dose-dependent neuroprotection. Loganin also effectively reduced the blood-brain barrier (BBB) permeability and cerebral oedema. Additionally, it mitigated cellular pyroptosis, as shown by terminal deoxynucleotidyl transferase dUTP nick-end labelling staining and western blot analysis, which indicated reduced levels of pyroptosis markers in treated rats. Furthermore, loganin's regulatory effects on the adenosine A2A receptor and myosin light chain kinase pathways were observed, potentially underpinning its protective mechanism against ICH. The study concludes that loganin exhibits significant neuroprotective properties in a rat ICH model, highlighting its potential as a novel therapeutic strategy. Despite promising results, the study needs further research to determine loganin's therapeutic potential in human ICH patients. This research paves the way for further exploration into loganin's clinical applications, potentially revolutionizing treatment strategies for patients suffering from intracerebral haemorrhage.


Assuntos
Iridoides , Fármacos Neuroprotetores , Humanos , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Piroptose , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/induzido quimicamente
13.
Commun Biol ; 7(1): 396, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561411

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is involved in the pathogenesis of multiple cardiovascular diseases. This study elucidated the biological function of lysine acetyltransferase 5 (KAT5) in cardiomyocyte pyroptosis during MIRI. Oxygen-glucose deprivation/reoxygenation and left anterior descending coronary artery ligation were used to establish MIRI models. Here we show, KAT5 and STIP1 homology and U-box-containing protein 1 (STUB1) were downregulated, while large tumor suppressor kinase 2 (LATS2) was upregulated in MIRI models. KAT5/STUB1 overexpression or LATS2 silencing repressed cardiomyocyte pyroptosis. Mechanistically, KAT5 promoted STUB1 transcription via acetylation modulation, and subsequently caused ubiquitination and degradation of LATS2, which activated YAP/ß-catenin pathway. Notably, the inhibitory effect of STUB1 overexpression on cardiomyocyte pyroptosis was abolished by LATS2 overexpression or KAT5 depletion. Our findings suggest that KAT5 overexpression inhibits NLRP3-mediated cardiomyocyte pyroptosis to relieve MIRI through modulation of STUB1/LATS2/YAP/ß-catenin axis, providing a potential therapeutic target for MIRI.


Assuntos
Traumatismo por Reperfusão Miocárdica , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Piroptose , Ubiquitinação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Lisina Acetiltransferase 5/metabolismo
14.
BMC Infect Dis ; 24(1): 366, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561650

RESUMO

BACKGROUND: Diabetic foot ulcer (DFU) is one of the main chronic complications caused by diabetes, leading to amputation in severe cases. Bacterial infection affects the wound healing in DFU. METHODS: DFU patients who met the criteria were selected, and the clinical data were recorded in detail. The pus exudate from the patient's foot wound and venous blood were collected for biochemical analysis. The distribution of bacterial flora in pus exudates of patients was analyzed by 16S rRNA sequencing, and the correlation between DFU and pathogenic variables, pyroptosis and immunity was analyzed by statistical analysis. Then, the effects of key bacteria on the inflammation, proliferation, apoptosis, and pyroptosis of polymorphonuclear leukocytes were investigated by ELISA, CCK-8, flow cytometry, RT-qPCR and western blot. RESULTS: Clinical data analysis showed that Wagner score was positively correlated with the level of inflammatory factors, and there was high CD3+, CD4+, and low CD8+ levels in DFU patients with high Wagner score. Through alpha, beta diversity analysis and species composition analysis, Corynebacterium accounted for a large proportion in DFU. Logistics regression model and Person correlation analysis demonstrated that mixed bacterial infections could aggravate foot ulcer, and the number of bacteria was closely related to inflammatory factors PCT, PRT, immune cells CD8+, and pyroptosis-related proteins GSDMD and NLRP3. Through in vitro experiments, Corynebacterium inhibited cell proliferation, promoted inflammation (TNF-α, PCT, CRP), apoptosis and pyroptosis (IL-1ß, LDH, IL-18, GSDMD, NLRP3, and caspase-3). CONCLUSION: Mixed bacterial infections exacerbate DFU progression with a high predominance of Corynebacterium, and Corynebacterium promotes inflammation, apoptosis and pyroptosis to inhibit DFU healing.


Assuntos
Infecções Bacterianas , Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/microbiologia , RNA Ribossômico 16S/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Bactérias , Inflamação , Supuração
15.
Cell Commun Signal ; 22(1): 216, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570868

RESUMO

BACKGROUND: Radiation-induced brain injury (RIBI) is a common and severe complication during radiotherapy for head and neck tumor. Repetitive transcranial magnetic stimulation (rTMS) is a novel and non-invasive method of brain stimulation, which has been applied in various neurological diseases. rTMS has been proved to be effective for treatment of RIBI, while its mechanisms have not been well understood. METHODS: RIBI mouse model was established by cranial irradiation, K252a was daily injected intraperitoneally to block BDNF pathway. Immunofluorescence staining, immunohistochemistry and western blotting were performed to examine the microglial pyroptosis and hippocampal neurogenesis. Behavioral tests were used to assess the cognitive function and emotionality of mice. Golgi staining was applied to observe the structure of dendritic spine in hippocampus. RESULTS: rTMS significantly promoted hippocampal neurogenesis and mitigated neuroinflammation, with ameliorating pyroptosis in microglia, as well as downregulation of the protein expression level of NLRP3 inflammasome and key pyroptosis factor Gasdermin D (GSDMD). BDNF signaling pathway might be involved in it. After blocking BDNF pathway by K252a, a specific BDNF pathway inhibitor, the neuroprotective effect of rTMS was markedly reversed. Evaluated by behavioral tests, the cognitive dysfunction and anxiety-like behavior were found aggravated with the comparison of mice in rTMS intervention group. Moreover, the level of hippocampal neurogenesis was found to be attenuated, the pyroptosis of microglia as well as the levels of GSDMD, NLRP3 inflammasome and IL-1ß were upregulated. CONCLUSION: Our study indicated that rTMS notably ameliorated RIBI-induced cognitive disorders, by mitigating pyroptosis in microglia and promoting hippocampal neurogenesis via mediating BDNF pathway.


Assuntos
Lesões Encefálicas , Disfunção Cognitiva , Camundongos , Animais , Estimulação Magnética Transcraniana/efeitos adversos , Estimulação Magnética Transcraniana/métodos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Microglia/metabolismo , Piroptose , Inflamassomos/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Cognição , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Neurogênese/efeitos da radiação
16.
Front Immunol ; 15: 1330461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576612

RESUMO

Macrophages are highly plastic cells ubiquitous in various tissues, where they perform diverse functions. They participate in the response to pathogen invasion and inflammation resolution following the immune response, as well as the maintenance of homeostasis and proper tissue functions. Macrophages are generally considered long-lived cells with relatively strong resistance to numerous cytotoxic factors. On the other hand, their death seems to be one of the principal mechanisms by which macrophages perform their physiological functions or can contribute to the development of certain diseases. In this review, we scrutinize three distinct pro-inflammatory programmed cell death pathways - pyroptosis, necroptosis, and ferroptosis - occurring in macrophages under specific circumstances, and explain how these cells appear to undergo dynamic yet not always final changes before ultimately dying. We achieve that by examining the interconnectivity of these cell death types, which in macrophages seem to create a coordinated and flexible system responding to the microenvironment. Finally, we discuss the complexity and consequences of pyroptotic, necroptotic, and ferroptotic pathway induction in macrophages under two pathological conditions - atherosclerosis and cancer. We summarize damage-associated molecular patterns (DAMPs) along with other microenvironmental factors, macrophage polarization states, associated mechanisms as well as general outcomes, as such a comprehensive look at these correlations may point out the proper methodologies and potential therapeutic approaches.


Assuntos
Apoptose , Piroptose , Morte Celular , Macrófagos , Necroptose
17.
Medicine (Baltimore) ; 103(14): e37642, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579086

RESUMO

Pyroptosis is a programmed cell death, which has garnered increasing attention because it relates to the immune and therapy response. However, few studies focus on the application of pyroptosis-related genes (PRGs) in predicting osteosarcoma (OS) patients' prognoses. In this study, the gene expression and clinical information of OS patients were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Based on these PRGs and unsupervised clustering analysis, all OS samples can be classified into 2 clusters. The 8 key differential expressions for PRGs (LAG3, ITGAM, CCL2, TLR4, IL2RA, PTPRC, FCGR2B, and CD5) were established through the univariate Cox regression and utilized to calculate the risk score of all samples. According to the 8-gene signature, OS samples can be divided into high and low-risk groups and correlation analysis can be performed using immune cell infiltration and immune checkpoints. Finally, we developed a nomogram to improve the PRG-predictive model in clinical application. We verified the predictive performance using receiver operating characteristic (ROC) and calibration curves. There were significant differences in survival, immune cell infiltration and immune checkpoints between the low and high-risk groups. A nomogram was developed with clinical indicators and the risk scores were effective in predicting the prognosis of patients with OS. In this study, a prognostic model was constructed based on 8 PRGs were proved to be independent prognostic factors of OS and associated with tumor immune microenvironment. These 8 prognostic genes were involved in OS development and may serve as new targets for developing therapeutic drugs.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Prognóstico , Piroptose , Nomogramas , Osteossarcoma/genética , Neoplasias Ósseas/genética , Microambiente Tumoral
18.
Chem Biol Drug Des ; 103(4): e14522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38580458

RESUMO

Pyroptosis is a programmed cell death process that frequently occurs in many diseases, including hyperuricemic nephropathy (HN). In HN, a range of stimuli mediates inflammation, leading to the activation of inflammasomes and the production of gasdermin D (GSDMD). Baicalin (BA), a natural flavonoid renowned for its antioxidant and anti-inflammatory properties, was investigated for its role in HN in this study. Initially, HN-like inflammation and pyroptosis were induced in HK-2 cells with treatment of monosodium urate (MSU), followed by the BA treatment. The expression of pyroptosis-associated genes, Panx-1 and P2X7, at both mRNA and protein levels was assessed through real-time polymerase chain reaction (RT-qPCR) and Western blotting (WB) without or with BA treatment. The results showed that expression of Panx-1 and P2X7 at mRNA and protein levels was increased in MSU-treated HK-2 cells, which subsequently decreased upon the BA treatment. Further experiments showed that BA could combine NLRP3 inflammasome and GSDMD, destabilizing GSDMD protein. Moreover, BA protected the cell membrane from MSU-induced damage, as evidenced by Hoechst 33342 and PI double staining, lactate dehydrogenase (LDH) assays, and electron microscopy observations. These results suggest that BA is involved in the regulating Panx-1/P2X7 pathways and thus inhibits pyroptosis, highlighting its potential therapeutic effect for HN.


Assuntos
Piroptose , Ácido Úrico , Humanos , Simulação de Acoplamento Molecular , Células Epiteliais , Flavonoides/farmacologia , Inflamação , RNA Mensageiro/genética
19.
J Cardiothorac Surg ; 19(1): 208, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616256

RESUMO

BACKGROUND: Cardiac fibroblasts (CFs) are activated after initial injury, and then differentiate into myofibroblasts (MFs), which play a pivotal role as the primary mediator cells in pathological remodeling. Sodium butyrate (NaB), being a metabolite of gut microbiota, exhibits anti-inflammatory property in local therapies on sites other than the intestine. Thus, this study aimed to probe the mechanism by which NaB regulates CFs transdifferentiation through the NLRP3/Caspase-1 pyroptosis pathway. METHODS: CFs were cultured in vitro and induced into MFs by TGFß1. CFs were identified by immunofluorescence labelling technique of vimentin and α-SMA, followed by treatment with NaB or NLRP3 inflammasome inhibitor (CY-09) and its activator [nigericin sodium salt (NSS)]. The expression levels of α-SMA, GSDMD-N/NLRP3/cleaved Caspase-1 proteins, and inflammatory factors IL-1ß/IL-18/IL-6/IL-10 were determined using immunofluorescence, Western blot and ELISA. Cell proliferation and migration were evaluated using the CCK-8 assay and the cell scratch test, respectively. RESULTS: Following the induction of TGFß1, CFs exhibited increased expression levels of α-SMA proteins and IL-6/IL-10, as well as cell proliferative and migratory abilities. TGFß1 induced CFs to differentiate into MFs, while NaB inhibited this differentiation. NaB inactivated the NLRP3/Caspase-1 pyroptosis pathway. CY-09 demonstrated inhibitory effects on the NLRP3/Caspase-1 pyroptosis pathway, leading to a reduction in TGFß1-induced CFs transdifferentiation. NSS activated the NLRP3/Caspase-1 pyroptosis pathway, and thus partially counteracting the inhibitory effect of intestinal microbiota metabolite NaB on CFs transdifferentiation. CONCLUSION: NaB, a metabolite of the gut microbiota, inhibited the activation of the NLRP3/Caspase-1 pyroptosis pathway in TGFß1-induced CFs, repressed the transdifferentiation of CFs into MFs.


Assuntos
Microbioma Gastrointestinal , Humanos , Caspase 1 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácido Butírico , Interleucina-10 , Transdiferenciação Celular , Interleucina-6 , Piroptose , Fibroblastos
20.
J Nanobiotechnology ; 22(1): 163, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600506

RESUMO

Photothermal immunotherapy is regarded as the ideal cancer therapeutic modality to against malignant solid tumors; however, its therapeutic benefits are often modest and require improvement. In this study, a thermoresponsive nanoparticle (BTN@LND) composed of a photothermal agent (PTA) and pyroptosis inducer (lonidamine) were developed to enhance immunotherapy applications. Specifically, our "two-step" donor engineering strategy produced the strong NIR-II-absorbing organic small-molecule PTA (BTN) that exhibited high NIR-II photothermal performance (ε1064 = 1.51 × 104 M-1 cm-1, η = 75.8%), and this facilitates the diagnosis and treatment of deep tumor tissue. Moreover, the fabricated thermally responsive lipid nanoplatform based on BTN efficiently delivered lonidamine to the tumor site and achieved spatiotemporal release triggered by the NIR-II photothermal effect. In vitro and in vivo experiments demonstrated that the NIR-II photothermal therapy (PTT)-mediated on-demand release of cargo effectively faciliated tumor cell pyroptosis, thereby intensifying the immunogenic cell death (ICD) process to promote antitumor immunotherapy. As a result, this intelligent component bearing photothermal and chemotherapy can maximally suppress the growth of tumors, thus providing a promising approach for pyroptosis/NIR-II PTT synergistic therapy against tumors.


Assuntos
Indazóis , Nanopartículas , Neoplasias , Humanos , Fototerapia , Piroptose , Neoplasias/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...